Compactness in Ginzburg-Landau Energy by Kinetic Averaging

نویسندگان

  • P. E. JABIN
  • B. PERTHAME
چکیده

We consider a Ginzburg-Landau energy for two dimensional divergence free fields appearing in the gradient theory of phase transition for instance. We prove that, as the relaxation parameter vanishes, families of such fields with finite energy are compact in L p(). Our proof is based on a kinetic interpretation of the entropies which were introduced by Desimone, Kohn, Müller and Otto. The so-called kinetic averaging lemmas allow to generalize their compactness results. Also the method yields a kinetic equation for the limit where the righthand side is an unknown kinetic defect bounded measure from which we deduce some Sobolev regularity. This measure also satisfies some cancellation properties depending on its local regularity, which seem to indicate several level of singularities in the limit. c © 2001 John Wiley & Sons, Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compacité par lemmes de moyenne cinétiques pour des énergies de Ginzburg-Landau Compactness in Ginzburg-Landau energy by kinetic averaging

Résumé Nous considérons une énergie de Ginzburg-Landau pour des champs de vecteurs à divergence nulle en dimension deux. Cette énergie apparâıt notamment dans la théorie des transitions de phase. Nous prouvons que, lorsque le paramètre de relaxation tend vers zéro, toute suite d’énergie finie est compacte et nous donnons quelques informations sur la limite. La preuve utilise une formulation cin...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Compactness Results for Ginzburg-landau Type Functionals with General Potentials

We study compactness and Γ-convergence for Ginzburg-Landau type functionals. We only assume that the potential is continuous and positive definite close to one circular well, but allow large zero sets inside the well. We show that the relaxation of the assumptions does not change the results to leading order unless the energy is very large.

متن کامل

Line–energy Ginzburg–Landau models: zero–energy states

We consider a class of two–dimensional Ginzburg–Landau problems which are characterized by energy density concentrations on a one– dimensional set. In this paper, we investigate the states of vanishing energy. We classify these zero–energy states in the whole space: They are either constant or a vortex. A bounded domain can sustain a zero–energy state only if the domain is a disk and the state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000